首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   88篇
  国内免费   100篇
化学   838篇
晶体学   6篇
力学   139篇
综合类   15篇
数学   36篇
物理学   331篇
  2024年   4篇
  2023年   59篇
  2022年   55篇
  2021年   60篇
  2020年   42篇
  2019年   58篇
  2018年   29篇
  2017年   61篇
  2016年   35篇
  2015年   42篇
  2014年   41篇
  2013年   91篇
  2012年   46篇
  2011年   47篇
  2010年   43篇
  2009年   72篇
  2008年   71篇
  2007年   73篇
  2006年   58篇
  2005年   67篇
  2004年   56篇
  2003年   45篇
  2002年   35篇
  2001年   22篇
  2000年   21篇
  1999年   17篇
  1998年   12篇
  1997年   15篇
  1996年   14篇
  1995年   15篇
  1994年   17篇
  1993年   9篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1365条查询结果,搜索用时 234 毫秒
11.
The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO–CNA networklike solutions were compared with previously reported PEO–LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer–clay interactions, were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3102–3112, 2004  相似文献   
12.
13.
Isobutylene isoprene rubber (IIR)‐clay nanocomposites have been prepared successfully by melt intercalation with maleic anhydride‐grafted IIR (Ma‐g‐IIR) and organophilic clay. In IIR‐clay nanocomposites, the silicate layers of the clay were exfoliated and dispersed into the monolayer. The nanocomposites exhibited greater gas barrier properties compared with those of Ma‐g‐IIR. When 15 phr clay was added, gas barrier properties were 2.5 times greater than those of Ma‐g‐IIR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1182–1188, 2006  相似文献   
14.
Anionic clay, ZnCuCoAlNO3 and its polyoxometalate intercalates were synthesized, and were characterized by XRD, IR, 31PMAS NMR, DTA and elemental analysis. The pillared products are found to be effective catalysts for oxidation of cyclohexene with molecular oxygen under mild reaction conditions  相似文献   
15.
粘土粒径及形态结构对粘土胶性能的影响   总被引:7,自引:1,他引:7  
用超声波和离心方法将3种来源不同的粘土样品按粒分径分级,测定各级分粒径比表面积和结构,并制备相应级分的粘土胶进行物理力学性能测试,结果表明,在一定范围内,粘土粒径的变化仅对粘土胶的某些力学性能产生物明显的影响,而粘土粒子以其独特的形态结构对粘土胶产生显著的补强作用。  相似文献   
16.
含铜三元类水滑石化合物的合成及其性质   总被引:11,自引:0,他引:11  
 以Cu(NO3)2,Zn(NO3)2和Al(NO3)3为原料,以NaOH为沉淀剂,利用共沉淀法合成了含铜三元类水滑石化合物CuZnAl-HTLcs.从不同Cu/Zn/Al比的混合原料溶液的滴定曲线入手,详细探讨了溶液pH值、原料加入方式、组分配比及水热处理条件对类水滑石合成的影响,利用XRD,ICP及比表面积测定对合成物进行了表征,并以苯酚羟基化为探针反应评价了催化剂的催化性能.结果表明,在体系pH=5.0~6.2,(Cu+Zn)/Al摩尔比=2.0,Cu/Zn摩尔比≤1.0及室温条件下共沉淀后,于100℃水热处理3h,即可得到晶相单一和结晶度高的CuZnAl-HTLcs.变化pH法合成的样品的相对结晶度为100%,低过饱和法为76.5%,高过饱和法为75.9%.合成的CuZnAl-HTLcs中Cu2+的含量均比原料液中Cu2+的含量有所增加,这可能是由于在pH=5.8时Cu2+对Al(OH)3的同晶取代能力比Zn2+强.随着CuZnAl-HTLcs中Cu含量的增加,催化剂对苯酚羟化反应的催化活性逐渐增大.  相似文献   
17.
粘土矿物的结构特征及其应用研究   总被引:2,自引:0,他引:2  
黄继泰 《结构化学》1996,15(6):438-443
阐述了贮量巨大、用途广泛的粘土矿物,其充分开发应用的关键,在于根据其结构特征,并通过适当的物理、化学方法加以改造、以适应各种不同工业应用的要求。并以我们对粘土矿物进行活化、改性、层间插入及其工业应用产品开发的初步研究成果,阐明利用粘土硅酸盐多层次结构的可变性,开拓新的应用性能的可能性及粘土矿物充分开发应用的途径。  相似文献   
18.
We present the search for a new model of -factor XIIa, a blood coagulation enzyme, with an unknown experimental 3D-structure. We decided to build not one but three different models using different homologous proteins as well as different techniques and different modellers. Additional studies, including extensive molecular dynamics simulations on the solvated state, allowed us to draw several conclusions concerning homology modelling, in general, and -factor XIIa, in particular.  相似文献   
19.
20.
The evolution and the origin of “solid-like state” in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the “solid-like” state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号